Trending...
- Mesa Joins 'Fix a Leak Week' to Help Residents Chase Down Water Waste
- Save the Date for Celebrate Mesa April 12
- Arizona: Governor Katie Hobbs to Travel to Taiwan for Diplomatic, Business Meetings
TEMPE, Ariz. - Arizonar -- Recent testing: initial contact angles of 45 degrees to 75 degrees were measured. After plasma treatment in our AutoGlow 1000 the contact angle was measured < 2 degrees. Testing performed in the AutoGlow 1000 production plasma cleaner.
Plasma Treatment is used to modify silicon wafer surface properties, specifically targeting hydrophilicity. This process involves exposing the silicon substrate to a low-pressure plasma environment, typically utilizing gases such as oxygen or argon/hydrogen mixture. Through the interaction between plasma species and the silicon surface, a cascade of intricate chemical reactions occurs, leading to the formation of hydrophilic functional groups, primarily hydroxyl (-OH) moieties, on the surface.
The plasma-induced surface modification proceeds through sequential steps. Initially, energetic plasma species, including ions, electrons, and radicals, impact the silicon surface, breaking surface bonds--forming reactive species like silicon radicals and dangling bonds. Subsequently, these species react with surrounding gas molecules, predominantly oxygen or hydrogen, resulting in the incorporation of oxygen or hydrogen atoms onto the silicon surface.
More on The Arizonar
The introduction of these functional groups, notably hydroxyl (-OH) groups, alters the silicon wafer's surface chemistry, rendering it hydrophilic. Hydroxyl groups exhibit a strong affinity for water molecules due to their polar nature, facilitating water adsorption and enhancing surface wetting. This transition, from hydrophobic to hydrophilic surfaces, holds significant importance in various technological domains, notably microfluidics, where precise control over surface wettability is vital for fluid manipulation and bioanalytical applications. Also important for bonding applications.
In semiconductor manufacturing, plasma treatment is particularly relevant for enhancing adhesion between silicon surfaces and functional layers like dielectric films or photoresists, thereby improving device performance and reliability. Moreover, the ability to tailor surface properties at the nanoscale level enables the fabrication of advanced nanostructures and surface patterns, paving the way for the development of innovative electronic and photonic devices.
More on The Arizonar
Plasma treatment emerges as a sophisticated methodology, offering unparalleled precision in tailoring silicon wafer surfaces. Our test show results to increase the hydrophilic surfaces to reducing contact angles. Plasma treatment plays a pivotal role in various applications such as increasing bonding strength.
Testing was performed on the AutoGlow 1000 plasma system configured for RIE and Direct Plasma.
Plasma Treatment is used to modify silicon wafer surface properties, specifically targeting hydrophilicity. This process involves exposing the silicon substrate to a low-pressure plasma environment, typically utilizing gases such as oxygen or argon/hydrogen mixture. Through the interaction between plasma species and the silicon surface, a cascade of intricate chemical reactions occurs, leading to the formation of hydrophilic functional groups, primarily hydroxyl (-OH) moieties, on the surface.
The plasma-induced surface modification proceeds through sequential steps. Initially, energetic plasma species, including ions, electrons, and radicals, impact the silicon surface, breaking surface bonds--forming reactive species like silicon radicals and dangling bonds. Subsequently, these species react with surrounding gas molecules, predominantly oxygen or hydrogen, resulting in the incorporation of oxygen or hydrogen atoms onto the silicon surface.
More on The Arizonar
- NaturismRE Calls for Body Acceptance Education in Schools to Tackle Youth Mental Health & Physical Inactivity
- Announcing The Must-Read Crypto Playbook Of 2025!
- Etan Polinger Officially Recognized As New Mexico's First Certified Ai Consultant
- Arizona: Governor Katie Hobbs Statement on Executive Order to Dismantle the US Department of Education
- Expert Law Attorneys Nominates 2025 Personal Injury Firms
The introduction of these functional groups, notably hydroxyl (-OH) groups, alters the silicon wafer's surface chemistry, rendering it hydrophilic. Hydroxyl groups exhibit a strong affinity for water molecules due to their polar nature, facilitating water adsorption and enhancing surface wetting. This transition, from hydrophobic to hydrophilic surfaces, holds significant importance in various technological domains, notably microfluidics, where precise control over surface wettability is vital for fluid manipulation and bioanalytical applications. Also important for bonding applications.
In semiconductor manufacturing, plasma treatment is particularly relevant for enhancing adhesion between silicon surfaces and functional layers like dielectric films or photoresists, thereby improving device performance and reliability. Moreover, the ability to tailor surface properties at the nanoscale level enables the fabrication of advanced nanostructures and surface patterns, paving the way for the development of innovative electronic and photonic devices.
More on The Arizonar
- The Ripple Effect Arts Leverages Social Media to Showcase the Benefits of Magic Magnesium Spray, Driving 200% Audience Growth
- Governor Katie Hobbs Announces Departure of Major General Kerry Muehlenbeck, Adjutant General of Arizona and Director of Arizona Department of Emergency and Military Affairs
- America Is Being Ripped Off: It's Time To Take Action Against Fraud & Foreign Exploitation
- Independence Title Honored for Excellence in Fraud Prevention by Stewart Title
- Valley Sleep Center Welcomes Dr. Sarah Cordova Kuper to the Team
Plasma treatment emerges as a sophisticated methodology, offering unparalleled precision in tailoring silicon wafer surfaces. Our test show results to increase the hydrophilic surfaces to reducing contact angles. Plasma treatment plays a pivotal role in various applications such as increasing bonding strength.
Testing was performed on the AutoGlow 1000 plasma system configured for RIE and Direct Plasma.
Source: Glow Research
0 Comments
Latest on The Arizonar
- Rampage Jackson and Rashad Evans Face Off At Press Conference At The Palms Casino Resort in Las Vegas on March 20, 2025
- Drone Light Shows Become the Must-Have Entertainment Trend for Events and Venues
- Save the Date for Celebrate Mesa April 12
- Multi-Million Dollar Contracts and Key Partnerships for Cybersecurity Solutions in the Rapidly Growing Market Nearing $200 Billion Annually $CYCU
- Unveil Hydrogen-Powered Maritime Innovation at H2Hub Summit
- Brookline Family Dentistry Updates Website URL for a Stronger Brand Identity
- Ohio Company Aims to Revolutionize CAN Controls Engineering with Simplified Tool
- RateLinx ShipLinx TMS Achieves 'Built for NetSuite' Status
- Major Defense Contractor, Satellite and Multiple Deployable Tech Companies Partnering with Ascent Solar Technologies, Inc: Stock Symbol: ASTI
- Rosann Santos Ofrece el Programa Repensando el Síndrome del Impostor™
- Criptlán Partners with Top Capital and Technology Teams to Drive the Future of the Digital Economy
- From Sea to the Site: The Evolution of the Shipping Container From the Water to the Worksite
- Inbound Lead Generation for Security Companies in 2025: The Key to Sustainable Growth
- Beyond Aesthetics: How Cosmetic Dentistry Improves Oral Health
- Rocket Mortgage Launches a More Localized approach to Mortgage Lending
- Frame Up Now Leverages Cyntexa and Salesforce to Fuel Their Operations & Power Up Lead Conversion
- M Film Lab Launches Spring 2025 Screenwriting Lab: Tales of Identity & Imagination
- TFL Tech Inc. Launches New & Improved Website
- The Right Reverend Mariann Edgar Budde, Bishop of the Episcopal Diocese of Washington, Joins Seabury Resources for Aging® Board of Governors
- Aries Industries Celebrates 40 Years of Innovation, Growth and Service